Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 MatterSim: DL-модель для предсказания свойств материалов от Microsoft.

MatterSim - усовершенствованная модель глубокого обучения в области материаловедения, предназначенная для моделирования свойств материалов в широком диапазоне элементов, температур и давлений. Она способна точно предсказывать свойства материалов по всей периодической таблице в диапазоне температур от 0 до 5000K и давления до 1000GPa.

MatterSim использует архитектуру M3GNet, которая включает в себя двух- и трехчастичные взаимодействия. Модель обучается с использованием функции потерь, учитывающей энергию на атом, вектор силы на каждом атоме и напряжение.

Особенность MatterSim - способность к активному и непрерывному обучению. Модель способна оценивать неопределенность своих прогнозов и выбирать структуры для активного обучения, что полезно для повышения точности моделирования сложных систем. MatterSim может быть настроена для моделирования на произвольном уровне теории.

Модель демонстрирует высокую точность в предсказании свободной энергии Гиббса и 10-кратное улучшение точности по сравнению с универсальными силовыми полями, обученными на траекториях релаксации на наборах данных MPF-TP и Random-TP.

Модель может быть точно настроена для атомистических симуляций на желаемом уровне теории или для прямых предсказаний "структура-свойство"с сокращением требований к данным до 97%.

▶️В релизе представлены 2 версии модели:

🟢MatterSim-v1.0.0-1M - мини-версия модели, которая работает быстрее;
🟢MatterSim-v1.0.0-5M - увеличенная версия, которая является более точной.

⚠️ Рекомендуется устанавливать MatterSim с помощью mamba или micromamba, поскольку conda может работать значительно медленнее при разрешении зависимостей в environment.yaml.

▶️ Установка и использование на примере ASE калькулятора:

# Install package with the latest version
pip install git+https://github.com/microsoft/mattersim.git

# Create env via mamba
mamba env create -f environment.yaml
mamba activate mattersim
uv pip install -e .
python setup.py build_ext --inplace

# Minimal example using ASE calculator
import torch
from ase.build import bulk
from ase.units import GPa
from mattersim.forcefield import MatterSimCalculator

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Running MatterSim on {device}")

si = bulk("Si", "diamond", a=5.43)
si.calc = MatterSimCalculator(device=device)
print(f"Energy (eV) = {si.get_potential_energy()}")
print(f"Energy per atom (eV/atom) = {si.get_potential_energy()/len(si)}")
print(f"Forces of first atom (eV/A) = {si.get_forces()[0]}")
print(f"Stress[0][0] (eV/A^3) = {si.get_stress(voigt=False)[0][0]}")
print(f"Stress[0][0] (GPa) = {si.get_stress(voigt=False)[0][0] / GPa}")


📌Лицензирование: MIT License.


🟡Модель
🟡Документация
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #DL #Mattersim #Microsoft
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/pro_python_code/1631
Create:
Last Update:

🌟 MatterSim: DL-модель для предсказания свойств материалов от Microsoft.

MatterSim - усовершенствованная модель глубокого обучения в области материаловедения, предназначенная для моделирования свойств материалов в широком диапазоне элементов, температур и давлений. Она способна точно предсказывать свойства материалов по всей периодической таблице в диапазоне температур от 0 до 5000K и давления до 1000GPa.

MatterSim использует архитектуру M3GNet, которая включает в себя двух- и трехчастичные взаимодействия. Модель обучается с использованием функции потерь, учитывающей энергию на атом, вектор силы на каждом атоме и напряжение.

Особенность MatterSim - способность к активному и непрерывному обучению. Модель способна оценивать неопределенность своих прогнозов и выбирать структуры для активного обучения, что полезно для повышения точности моделирования сложных систем. MatterSim может быть настроена для моделирования на произвольном уровне теории.

Модель демонстрирует высокую точность в предсказании свободной энергии Гиббса и 10-кратное улучшение точности по сравнению с универсальными силовыми полями, обученными на траекториях релаксации на наборах данных MPF-TP и Random-TP.

Модель может быть точно настроена для атомистических симуляций на желаемом уровне теории или для прямых предсказаний "структура-свойство"с сокращением требований к данным до 97%.

▶️В релизе представлены 2 версии модели:

🟢MatterSim-v1.0.0-1M - мини-версия модели, которая работает быстрее;
🟢MatterSim-v1.0.0-5M - увеличенная версия, которая является более точной.

⚠️ Рекомендуется устанавливать MatterSim с помощью mamba или micromamba, поскольку conda может работать значительно медленнее при разрешении зависимостей в environment.yaml.

▶️ Установка и использование на примере ASE калькулятора:

# Install package with the latest version
pip install git+https://github.com/microsoft/mattersim.git

# Create env via mamba
mamba env create -f environment.yaml
mamba activate mattersim
uv pip install -e .
python setup.py build_ext --inplace

# Minimal example using ASE calculator
import torch
from ase.build import bulk
from ase.units import GPa
from mattersim.forcefield import MatterSimCalculator

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Running MatterSim on {device}")

si = bulk("Si", "diamond", a=5.43)
si.calc = MatterSimCalculator(device=device)
print(f"Energy (eV) = {si.get_potential_energy()}")
print(f"Energy per atom (eV/atom) = {si.get_potential_energy()/len(si)}")
print(f"Forces of first atom (eV/A) = {si.get_forces()[0]}")
print(f"Stress[0][0] (eV/A^3) = {si.get_stress(voigt=False)[0][0]}")
print(f"Stress[0][0] (GPa) = {si.get_stress(voigt=False)[0][0] / GPa}")


📌Лицензирование: MIT License.


🟡Модель
🟡Документация
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #DL #Mattersim #Microsoft

BY Python RU







Share with your friend now:
tg-me.com/pro_python_code/1631

View MORE
Open in Telegram


Python RU Telegram | DID YOU KNOW?

Date: |

Why Telegram?

Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.

How To Find Channels On Telegram?

There are multiple ways you can search for Telegram channels. One of the methods is really logical and you should all know it by now. We’re talking about using Telegram’s native search option. Make sure to download Telegram from the official website or update it to the latest version, using this link. Once you’ve installed Telegram, you can simply open the app and use the search bar. Tap on the magnifier icon and search for a channel that might interest you (e.g. Marvel comics). Even though this is the easiest method for searching Telegram channels, it isn’t the best one. This method is limited because it shows you only a couple of results per search.

Python RU from ca


Telegram Python RU
FROM USA